Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo
نویسندگان
چکیده
Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty liquefaction and subsequently causes a fertility defect.
منابع مشابه
Revisiting Beta 2 Glycoprotein I, the Major Autoantigen in the Antiphospholipid Syndrome
Beta 2 glycoprotein I (β2GPI) is a single chain 50 kDa highly glycosylated glycoprotein at an approximate concentration of 4 μM in cells. The abundance of this protein in plasma and its high state of preservation indicate the important role of this protein in mammalian. In addition, β2GPI has a particular structure in the fifth domain, and is categorized as the major antigen recognized by autoa...
متن کاملAB073. Semen liquefaction molecular pathways
Objective: Human semen is the jelly-like substance mainly containing semenogelin 1 (Sg1) and fibronectin (Fn) with the characteristics of coagulation and liquefaction in a short time. In our previous study, we have identified that Eppin could interact with Sg. Eppin C-terminal fragment bind the Sg fragment containing the only cysteine in human Sg I (Cys-239). Besides that, during semen liquefac...
متن کاملThe Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملThe roles of RFamide-related peptides (RFRPs), mammalian gonadotropin-inhibitory hormone (GnIH) orthologues in female reproduction
Objective(s): To benefit from reproduction and deal with challenges in the environmental conditions, animals must adapt internal physiology to maximize the reproduction rate. Maladaptive variations in the neurochemical systems and reproductive system can lead to manifestation of several significant mammalian reprocesses, including mammalian ovarian lifespan. RFamide-related peptide (RFRP, Rfrp)...
متن کاملSemen hyperviscosity: causes, consequences, and cures.
The prevalence of semen hyperviscosity (SHV) is estimated to be between 12-29% and can lead to male factor infertility both in vivo and in vitro. Semen is composed of fluids secreted by the male accessory glands, which contain proteins essential to the coagulation and liquefaction of semen. Hypofunction of the prostate or seminal vesicles causes abnormal viscosity of seminal fluid. Infection an...
متن کامل